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Abstract The evaluation of individual rate constants involved in any reaction mech-
anism of an enzymatic systems first requires experimental monitoring of the time
course of the concentration or product rate creation or of any enzyme species. The
experimental progress curves obtained must then be fitted to the corresponding theo-
retical symbolic equation. Nevertheless, in some cases, e.g. when the equation involves
two or more exponential terms, this fit is not easy and sometimes impossible. Simplifi-
cation of the equation is usually required by assuming, for example, that the system has
reached the steady-state, assuming an initial steady-state of a segment in the scheme
of the reaction mechanism or assuming rapid equilibrium in one or more of the revers-
ible steps, if there are any. But, obviously, simplified equations produce either fewer
individual rate constants or global constants consisting of algebraic associations of
individual rate constants or individual rate constants or global constants that might
considerably differ from the real ones due to the approaches made. In this contribu-
tion, we suggest an alternative procedure for evaluating the rate constants of enzyme
reactions corresponding to enzyme systems where one or more of the species involved
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is unstable or where one or more of the enzyme species is irreversibly inhibited, or
both. The procedure is based on the numerical determination of statistical moments
from experimental time progress curves. The fitting of these experimentally obtained
moments to the corresponding theoretical expressions allows us, in most cases, to
evaluate of all of the rate constants involved, with only a small error. To verify the
goodness of the suggested procedure, it was applied to an unstable enzyme system
which had previously been analysed with other methods. Finally, it is indicated how
this procedure could also be extrapolated for application to any stable or unstable
enzyme system.

Keywords Statistical · Moment · Enzyme · Kinetics · Unstable

1 Introduction

In almost all biochemistry courses, as well as in supporting textbooks [1–7], metabolic
pathways are taught under the tacit assumption that the reactants, the intermediates
and the products are stable or confined to the reaction shown in the metabolic scheme
presented. Thus, side reactions and spontaneous decomposition of the reaction species
in the scheme are usually ignored, despite the fact that they often play an important
role in vivo [8–17].

At first sight, the structural stability of a metabolic or regulatory enzyme seems to
represent a favourable quality, because it increases the efficiency of the pathway and
saves energy, as well as the substance required to compose and maintain the system.
However, metabolism must be seen in a wider perspective, since other processes must
also be kept in operation. These may require resources, e.g. amino acids, high energy
phosphate and coenzymes, or cofactors, which may be in short supply. Hence, the lim-
ited stability of some components of the system may serve to partition the resources
to maintain the overall dynamic balance in homeostasis or growth processes, while
the failure of such as integrated regulation may indirectly lead to cell degeneration or
uncontrolled proliferation, e.g. autoimmunity and cancer [12,18].

Some enzyme reactions exist in which some of the reaction species are unsta-
ble, e.g. swing to impurities or irreversible inhibitors. In some other cases they may
degrade spontaneously due to the assay conditions used (pH, temperature, metal ions,
etc.). The case in which both the free enzyme and the enzyme–substrate complex or
complexes are unstable, e.g. that shown in Scheme 1, has been studied theoretically
[9,11,12,19–21] as well as experimentally [22]. Another, more complex example of
a mechanism corresponding to enzyme unstable systems is shown in Schemes 2 and
3 [9].

A very interesting type of unstable enzyme system is that in which the enzyme
inactivation is induced by the substrate. Although the enzyme is stable, the sub-
strate provokes instability in the enzyme–substrate complex. This type of inactiva-
tion is known as “substrate inactivation” or “suicide inhibition” and takes place in
enzymes which act on a substrate by means of a branched mechanism consisting of
a catalytic route and an enzyme inactivating route. Such substrates are called suicide
inhibitors, mechanism-based inhibitors, inactivating substrates and suicide substrates
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[16,23–28]. Scheme 2 [16,25] shows the simplest suicide inhibition mechanism, where
E and Ei are the active and inactive enzyme forms, X and Y are intermediates and S
and P are the substrate and the product, respectively.

There are enzyme reactions in which the substrate is suicide and, furthermore, the
enzyme is unstable, such as that shown in Scheme 3 [29] consisting in Scheme 2 but
where the free enzyme, E, and the complex enzyme–substrate, X, are unstable.

The importance of enzyme suicide inactivation is gaining increased recognition for
both naturally occurring and totally synthetic suicide substrates [30–33], and there is a
wide range of enzymes of great physiological interest which act on suicide substrates
[34–41].

Sometimes the instability of an enzyme form is induced by the presence of an
irreversible inhibitor, I, e.g. as in Scheme 4.

There are enzyme reactions in which the product [11,20,42–47], the substrate
[48–51] or both the product and the substrate [11] of the enzyme reaction may also be
unstable regardless of whether the free enzyme or the enzyme–substrate complex(es)
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are stable. Sometimes, the inhibitor involved in an enzyme reaction can be unstable
[52,53].

Characterization of unstable enzyme systems, as well as of the stable systems,
consists of evaluating the individual rate constants and/or some global constants con-
sisting of an algebraic combination of individual rate constants, such as the Michaelis
constant and equilibrium constants, or algebraic combinations of rate constants and
initial concentrations such as the Vmax.

The general strategy followed to evaluate the above kinetic parameters is, usually,
as follows:

(a) Based on the suggested scheme of the reaction mechanism one writes the set of
ordinary differential equations describing the kinetic behaviour of the species involved
in the reaction. This set of differential equations is generally non-linear.

(b) To linearize the above set of non-linear differential equations some reasonable
assumptions are made, such as that the initial concentration of the substrate and other
possible ligands (e.g. inhibitors) are in excess compared with the free enzyme or vice
versa, so that approximate analytical equations corresponding to the time course of
any of the involved species can be derived.

(c) Sometimes additional assumptions are made to simplify the resulting approx-
imate analytical solutions compared with the strict ones derived in step (b), e.g. the
approach of the rapid equilibrium of one or more of the reversible steps (if any) or the
assumption of an initial steady-state in the catalytic route of the reaction mechanism
scheme. This step (c) should, in our opinion, be avoided if it is not absolutely justi-
fied, because the assumptions used in it are artificial and, moreover, they yield global
constants instead of the individual rate constants.

(d) The time course of the same magnitude as that of which the analytical solution
is experimentally monitored.

(e) Finally, the experimental data are fitted to the corresponding theoretical sym-
bolic equation and the kinetic parameters are evaluated.

In different contributions about specific unstable enzyme systems, the above gen-
eral procedure has been particularized in the corresponding experimental design and
kinetic data analysis [9,11,12,15,19,20,24,25,39,44,54–60]. The suggested corre-
sponding method in each of the above contributions is either valid only for the specific
mechanism studied or, in most cases, the mathematical procedure is very laborious.
No general procedure valid for any unstable enzyme system independently of its com-
plexity and whether the involved enzyme is unstable or irreversibly reacting with an
inhibitor, has been suggested.

This paper proposes a novel and general procedure, which is easy to apply and
valid for any unstable system, based on the statistical moments of any function arising
from the set of differential equations (once linearized) corresponding to the unstable
enzyme system, which can be expressed as a sum of exponential terms. The ease of
the procedure for mechanisms of any complexity is based on an algorithm developed
in the Appendix A, which allows the systematic derivation of the analytical expres-
sions of the j-th statistical moments of the function. This is especially useful for high
j-values and or high number of exponential terms in the function.
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2 Materials and methods

Simulated progress curves were obtained by numerical integration of the set of dif-
ferential equations describing the kinetics of the reaction evolving according to the
corresponding mechanism under study, using values of the rate constants and initial
concentrations, which have either been published in the literature or chosen arbi-
trarily, but realistically. This numerical solution was found by the use of the classical
fourth-order Runge–Kutta formula, but applying an adaptative stepsize control that
was originally invented by Fehlberg [61–63] using the software WES implemented in
Visual C++ 6.0 [64]. The above program was run on a PC compatible computer based
on a Pentium IV/2 GHz processor with 512 MB of RAM.

The plots of the data obtained from the numerical integration, as well as the plots of
equations made in Figs. 1–7, were carried out using the SigmaPlot Scientific Graphing
System program, version 8.02 (2002, SPSS Inc).

3 Time course equations for the concentrations of the species involved
in unstable enzyme systems

From the set of differential equations describing the kinetic behaviour of an unsta-
ble enzyme system, after linearization, approached (because the set of differential
equations is only approximately linear) integrated analytical solutions giving the time
course concentration of any involved species can be derived. From these results any
other time course equation can be obtained, e.g. those corresponding to a sum of con-
centrations of enzyme forms, or to the first time derivative of a concentration or of a
sum of concentrations, etc.

Fig. 1 Time progress curve of v(t) corresponding to an enzyme system evolving according to reaction mech-
anism in Scheme 1 for the following set of values of the rate constants and initial enzyme and substrate
concentrations: k1 = 105 M−1 s−1, k−1 = 3 s−1, k2 = 2 s−1, k3 = 1 s−1, k4 = 5 s−1, [E]0 = 1.7 µM and
[S]0 = 0.5 mM. The area below the curve, from t = 0 to t → ∞, which can be obtained both numerically
and analytically, coincides with the moment M0
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Fig. 2 Time progress curve of t · v(t) corresponding to an enzyme system evolving according to reaction
mechanism in Scheme 1 for the same set of values of the rate constants and initial concentrations as in
Fig. 1. The area below the curve, from t = 0 to t → ∞, which can be obtained both numerically and
analytically, coincides with the moment M1

Fig. 3 Time progress curve of t2 · v(t) corresponding to an enzyme system evolving according to reaction
mechanism in Scheme 1 for the same set of values of the rate constants and initial concentrations as in
Fig. 1. The area below the curve, from t = 0 to t → ∞, which can be obtained both numerically and
analytically, coincides with the moment M2

The derivation of the approximated analytical equations corresponding to an unsta-
ble enzyme system can be derived from the linearized set of differential equations by
one of the following ways: [65–69]. The time course equations can also be derived by
considering the reaction mechanism of the enzyme system under study as a derived
mechanism of another, more complex, primitive enzyme system and introducing in
the equations of the primitive mechanism the same changes that reduced it to a derived
mechanism [70].
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Fig. 4 Simulated time progress curves of v(t) obtained from numerical integration of the set of differential
equations in Appendix B corresponding to Scheme 1. In each of the curves the values of [E]0 and the rate
constants were the same as in Fig. 1. The [S]0-values used for each curve were the same as those shown in
Table 2 in increasing order from curve 1 to curve 8. Inset: Details at the onset of the reaction

Fig. 5 Simulated time progress curves of t ·v(t) obtained from numerical integration of the set of differential
equations in Appendix B corresponding to Scheme 1. In each of the curves the values of [E]0 and the rate
constants were the same as those in Fig. 1. The [S]0-values used for each curve were the same as those
shown in Table 2 in increasing order from curve 1 to curve 8. Inset: Details at the onset of the reaction

The time-dependent function, f (t), furnishing the instantaneous concentration at
time t of any of the species involved in an unstable enzyme system and whose con-
centration varies with time (i.e. its concentrations is not assumed constant in the
linearization process) is given by the general equation [65,68]:

f (t) = β +
n∑

h=1

γhe
λht (1)
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Fig. 6 Simulated time progress
curves of t2 · v(t) obtained from
numerical integration of the set
of differential equations in
Appendix B corresponding to
Scheme 1. In each of the curves
the values of [E]0 and the rate
constants were the same as those
in Fig. 1. The [S]0-values used
for each curve were the same as
those shown in Table 2 in
increasing order from curve 1 to
curve 8. Inset: Details at the
onset of the reaction

t (s)
0 2 4 6 8 10

t2
( v 
nM

)s 

0

20

40

60

80

100

120

 [S]0

t (s)
0 1 2 3 4 5

t2
)s 

Mn( v 

0

20

40

60

80

100

120

1

8

Fig. 7 Fit by linear regression of the experimental data [S]0 and M0 to Eq. 43. For simplicity we called Z

the left side of this equation. From this fitting a′′ and b′′ are immediately obtained. Inset: Details for low
[S]0-values

where n, according to the specific mechanism and the specific species in the mech-
anism can take any of the values 1, 2, . . .. Generally, the more complex the reaction
mechanism, the higher the n-value.

The arguments λh(h = 1, 2, . . . , n) in Eq. 1 are the roots of an equation

λn + F1λ
n−1 + · · · + Fn−1λ + Fn = 0 (2)

arising in the derivation of Eq. 1 and any of these roots can be either real and negative
or complex with a negative real part.
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According to the polynomial theory, among the arguments λh(h = 1, 2, . . . , n) the
following very useful (see below) relationships are observed:

λ1 + λ2 + · · · + λn = −F1
λ1λ2 + λ1λ3 + · · · + λn−1λn = F2

...

λ1λ2 · · · λn = (−1)nFn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(3)

We denote as Pq(q = 1, 2, . . . , n) the sum of all of the q-nary products of the argu-
ments λh(h = 1, 2, . . . , n). For completeness, we set P0 = F0 = 1. The following
relationship between Pq and Fq , which will be useful below, is observed:

Pq = (−1)qFq(q = 0, 1, 2, . . . , n) (4)

The amplitudes γh (h = 1, 2, . . . , n) of Eq. 1 are explicit functions of λh(h =
1, 2, . . . , n), of the rate constants involved in the process and of the initial concentra-
tions of the ligand species present at the onset of the reaction. Finally, β is a time-
independent, non-negative quantity, the meaning of which is the value of f (t) when
t tends to infinite, i.e.:

β = lim
t→∞ f (t) (5)

Due to the properties of the arguments λh (h = 1, 2, . . . , n) each of the exponen-
tial terms corresponding to a real tends to zero when t → ∞ and each sum of two
exponential terms corresponding to complex and conjugated λh(h = 1, 2, . . . , n), if
any, goes to zero when t → ∞ and, therefore, Eq. 5 is observed.

Note that at t = 0, the exponential terms in Eq. 1 reduce to the corresponding
amplitudes γh(h = 1, 2, . . . , n) and, therefore, the relationship yields:

β = f (0) −
n∑

h=1

γh (6)

Equation 5 can be considered as the conceptual definition of β. According to this
equation, β means the value of the concentration of the species corresponding to
f (t) at t → ∞, i.e. at high t-values. This is the reason for sometimes designing
β, according to the specific case, as [P]∞, [Ei]∞, etc. Equation 6 can be considered
as the operational definition of β, indicating that it is obtained by subtracting from
f (0) the sum of the n amplitudes γh(h = 1, 2, . . . , n). Therefore, β depends on f (0)

[when f (0) �= 0] and on the same parameters and initial concentrations on which the
amplitudes γh(h = 1, 2, . . . , n) depend.
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3.1 Examples of time course equations for the concentrations

As an example, we summarize in Table 1 the time course equation of the concentra-
tions [E], [ES], [Ei], [ESi] and [P] of the enzyme forms E, ES, Ei, ESi and the product
P involved in unstable enzyme systems evolving according to the reaction mecha-
nism in Scheme 1. The table also shows the concentration of the residual enzyme
activity defined as the sum [E] + [ES]. To derive these equations we have assumed
that the instantaneous substrate concentration, [S], remains approximately constant
during the whole course of the reaction (i.e. until the active enzyme vanishes) in order
to the corresponding set of differential equations describing the kinetic behaviour of
the system becomes linear. The approximate constancy of [S] can be experimentally
reached if the initial concentration of the substrate, [S]0 is set much higher than the
initial concentration of enzyme, [E]0. The strict equations f (t) in Table 1 have been
taken from Garrido del Solo et al. [19] and all of them have the common form:

f (t) = β + γ1e
λ1t + γ2e

λ2t (7)

where λ1 and λ2 are the roots of the equation:

λ2 + F1λ + F2 = 0 (8)

being:

F1 = k1[S]0 + k3 + k−1 + k2 + k4 (9)

and

F2 = k3(k−1 + k2 + k4) + k1k4[S]0 (10)

Solving Eq. 8 we get:

λ1 =
−F1 +

√
F 2

1 − 4F2

2
(11)

λ2 =
−F1 −

√
F 2

1 − 4F2

2
(12)

Roots λ1 and λ2 are real and negative or complex conjugated with a negative real
part, according to F 2

1 ≥ 4F2 or F 2
1 < 4F2, respectively. Between λ1 and λ2 the

following relationships exist:

λ1 + λ2 = −F1 (13)
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Table 1 Time course of the concentrations [E], [ES], [E] + [ES], [Ei], [ESi] and [P], assuming that the initial
concentration of the substrate, [S]0, is much higher than the initial concentration, [E]0, of the free enzyme.
During the whole course of the reaction, the substrate concentration remains approximately constant and
the set of differential equations describing the kinetic behaviour of the unstable enzyme systems evolving
according to Scheme 1 becomes (approximately) linear. In this case, all of the functions f (t) explained in
the main text have the form f (t) = β + γ1eλ1t + γ2eλ2t . In the first column the specific function f (t) is
indicated and in columns 2nd, 3rd and 4th the expressions corresponding to β, γ1 and γ2 are given. The
parameter Vmax involved in the expression of β, γ1 and γ2 is given by k2[E]0. The expressions of the
arguments λ1 and λ2 are those given in the main text

f (t) β γ1 γ2

[E] 0 − λ1+k−1+k2+k4
λ2−λ1

− λ2+k−1+k2+k4
λ1−λ2

[ES] 0 − k1[S]0[E]0
λ2−λ1

− k1[S]0[E]0
λ1−λ2

[E] + [ES] 0 − λ1+k−1+k2+k4+k1[S]0
λ2−λ1

− λ2+k−1+k2+k4+k1[S]0
λ1−λ2

[Ei]
k3(k−1+k2+k4)[E]0

k3(k−1+k2+k4)+k1k4[S]0 − k3(λ1+k−1+k2+k4)[E]0
λ1(λ2−λ1)

− k3(λ2+k−1+k2+k4)[E]0
λ2(λ1−λ2)

[ESi]
k1k4[S]0[E]0

k3(k−1+k2+k4)+k1k4[S]0 − k1k4[S]0[E]0
λ1(λ2−λ1)

− k1k4[S]0[E]0
λ2(λ1−λ2)

[P] k1Vmax[S]0
k3(k−1+k2+k4)+k1k4[S]0 − k1Vmax[S]0

λ1(λ2−λ1)
− k1Vmax[S]0

λ2(λ1−λ2)

and

λ1λ2 = F2 (14)

The expressions of β, γ1 and γ2 are given in Table 1.

3.2 Definition of the function g(t) associated with the function f (t)

We will define the function g(t) associated with the function f (t) as follows:

g(t) =

⎧
⎪⎨

⎪⎩

f (t) if β = 0

df (t)

dt
if β �= 0

(15)

i.e.

g(t) =
n∑

h=1

δhe
λht (16)
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where:

δh =
⎧
⎨

⎩

γh if β = 0

λhγh if β �= 0
(17)

4 Statistical moments of g(t)

From the well know definition of statistical moment of order j of a function [63,71–
73], the j -th (j = 0, 1, 2, . . .) statistical moment (which, for ease, we will denote as
Mj) of any of the above defined functions g(t) is given by:

Mj =
∞∫

0

tj g(t)dt (j = 0, 1, 2, . . .) (18)

where, for completeness, we have included the value j = 0.
The j -th statistical moment Mj can be obtained either as a symbolic expression

from the symbolic expression of g(t) and the analytical integration indicated in Eq.
18, or in a numerical way from the experimental time course of g(t) and taking into
account that the integral on the right hand side of Eq. 18 coincides with the area below
the curve tj · g(t) between t = 0 and t → ∞ (t → ∞ must be interpreted as a time,
arbitrarily chosen by the worker, at which tj · g(t) → 0).

If in Eq. 18 we insert Eq. 16, we have:

Mj =
n∑

h=1

δh

⎛

⎝
∞∫

0

tj eλhtdt

⎞

⎠ (j = 0, 1, 2, . . .) (19)

The integral in Eq. 19 is the well known Gamma Function [63] and it is given by:

∞∫

0

tj eλhtdt = j !
(−λh)

j+1 [Re(j) > −1, Re(λh) < 0] (20)

Hence, Eq. 19 can be written as:

Mj = (−1)j+1j !
n∑

h=1

δh

λ
j+1
h

(j = 0, 1, 2, . . .) (21)

If the corresponding expressions of δh (h = 1, 2, . . . , n) are inserted in Eq. 21,
then the sum indicated is carried out and, if the relationship between the arguments λh

(h = 1, 2, . . . n), given by Eq. 3, is taken into account, then, we obtain Mj in terms
of the kinetic parameters involved in the reaction mechanism scheme and the initial
concentrations of the species present at the onset of the reaction.
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4.1 Example: some statistical moments of the function d[P]/dt corresponding to the
example in Scheme 1 under the condition of limiting enzyme

As an example we next derived the statistical moments M0, M1 and M2 corresponding
to the time function d[P]/dt corresponding to Scheme 1. The function [P] [i.e. f (t)]
furnishing the time product accumulation is given by Eq. 7, where the expressions of
β, γ1 and γ2 are given in Table 1. If we derive [P] with respect to time, we obtain the
function g(t), i.e. the instantaneous rate, v, of product formation, P , given by:

g(t) = δ1e
λ1t + δ2e

λ2t (22)

where

δ1 = γ1λ1 (23)

and

δ2 = γ2λ2 (24)

Expression of M0. From Eq. 21 with n = 2 and j = 0 and from Eqs. 23 to 24 and
the expression of γ1 and γ2 in the last row of Table 1, we obtain:

M0 = k1Vmax[S]0

{
1

λ1(λ2 − λ1)
+ 1

λ2(λ1 − λ2)

}
(25)

where the parameter Vmax is given by

Vmax = k2[E]0 (26)

If the indicated algebraic “operations” are carried out and Eqs. 14 and 10 are taken
into account, then the following results:

M0 = k1Vmax[S]0

k3(k−1 + k2 + k4) + k1k4[S]0
(27)

M0 can be obtained graphically because it coincides with the area below the time
progress curve of the rate, v, of the product accumulation, as shown in Fig. 1 for a
simulated time progress curve obtained from the arbitrary set of values of the rate
constants and [S]0 indicated in the figure caption.

By dividing both numerator and denominator from the right side of Eq. 27 by
k3(k−1 + k2 + k4) we get:

M0 = bVmax[S]0

1 + c[S]0
(28)
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b and c being:

b = k1

k3(k−1 + k2 + k4)
(29)

c = k1k4

k3(k−1 + k2 + k4)
(30)

Expression of M1. Hence, from Eq. 21 with n = 2 and j = 1 Eqs. 23 and 24 and
the expression of γ1 and γ2 on the last row in Table 1, one obtains:

M1 = −k1Vmax[S]0

{
1

λ2
1(λ2 − λ1)

+ 1

λ2
2(λ1 − λ2)

}
(31)

Carrying out the sum indicated in Eq. 31 and taking into account Eqs. 13, 14, 9 and
10 we obtain:

M1 = k1Vmax(k−1 + k2 + k3 + k4 + k1[S]0)[S]0

{k3(k−1 + k2 + k4) + k1k4[S]0}2 (32)

By dividing both numerator and denominator on the right side of Eq. 32 by k2
3(k−1+

k2 + k4)
2, we obtain:

M1 = bVmax
(
a′ + b[S]0

) [S]0

(1 + c[S]0)2 (33)

where b and c are given by Eqs. 29 and 30 and a′ by:

a′ = k−1 + k2 + k3 + k4

k3(k−1 + k2 + k4)
(34)

M1 can be obtained graphically because it coincides with the area below the time
progress curve t ·v, as shown in Fig. 2 for a simulated time progress curve obtained from
the same set of values of the rate constants and initial concentration of the substrate
as used in Fig. 1.

Expression of M2. Finally, the expression for the moment M2 can be derived. From
Eq. 21 with n = 2 and j = 2, Eqs. 23 and 24 and the expression of γ1 and γ2 on the
last row in Table 1, one obtains:

M2 = 2k1Vmax[S]0

{
1

λ3
1(λ2 − λ1)

+ 1

λ3
2(λ1 − λ2)

}
(35)
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Carrying out the indicated sum in above Eq. 35, taking Eqs. 13 and 14 into account,
as well as some algebraic considerations, gives:

M2 = 2k1Vmax[S]0
F 2

1 − F2

F 3
2

(36)

where F1 and F2 are given by Eqs. 9 and 10.
By dividing both numerator and denominator from the right side of Eq. 36 by

k3
3(k−1 + k2 + k4)

3, one obtains:

M2 = 2bVmax
(
a′′ + b′′[S]0 + b2[S]2

0

) [S]0

(1 + c[S]0)
3 (37)

where:

a′′ = 1

k2
3

+ a′

k−1 + k2 + k4
(38)

b′′ = b

(
a′ + k−1 + k2 + k3

k3(k−1 + k2 + k4)

)
(39)

M2 can be obtained graphically because it coincides with the area below the time
progress curve t2 · v, as shown in Fig. 3 for a simulated time progress curve obtained
from the same set of values of the rate constants and initial concentration of the sub-
strate as used in Fig. 1.

Equations 25, 31 and 35 contains expressions like:

2∑

h=1

1

λr
h(λp − λh)

(p �= h; r = 1, 2, 3, . . .) (40)

which can be solved individually and simply, except, perhaps expression correspond-
ing to Eq. 35. Nevertheless, in the analysis of statistical moments of other more com-
plex unstable enzyme systems, the corresponding expression of Eq. 40 might be more
difficult to obtain in spite of it having the same form. However, an algorithm [17,74,75]
exits which allows the expressions like:

n∑

h=1

1

λr
h

n∏
p=1
p �=h

(
λp − λh

) (n = 1, 2, 3, . . . ; r is an integer number) (41)

to be easily obtained.
In Appendix A we summarize how to express a sum of the type in Eq. 41 as a func-

tion of the coefficients F1, F2, . . ., Fn involved in polynomial F(s). This expression
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depends on the relative values of n and r and on the fact that r is negative, positive or
zero.

5 Description of the suggested method

In the description of the method proposed is assumed the existence of only one ligand
species at the onset of the reaction, e.g. the substrate, S. The method is easily extrap-
olable to those cases in which two or more ligand species exist (e.g. a substrate and
an inhibitor, two substrates, etc.). This method consists of the following steps:

(1) A species involved in the reaction mechanism scheme is chosen whose time
variation can be monitored experimentally with the media available, such as the
concentration of an enzyme form, the product accumulation, etc. It is also possi-
ble to choose two or more species whose sum of concentrations, e.g. the residual
activity in some cases, can be monitored.

(2) The corresponding function f (t) is derived, see Eq. 7, or one is taken from
literature.

(3) The function g(t), see Eq. 16, associated with f (t) is derived.
(4) Different curves g(t) at a fixed value of the initial enzyme concentration and

at different values of the initial concentration of the substrate are determined
experimentally.

(5) From each of the above curves (i.e. for each of the [S]0-values used) one numer-
ically determines the area below the curve, i.e. the corresponding statistical
moment M0.

(6) Using Eqs. 21 and 17 and the corresponding expressions of Eqs. 27 and 28, the
analytical expression of M0 is determined. This will depend on [S]0 through cer-
tain parameters, each of them related with the individual rate constants involved
in the scheme of reaction mechanism.

(7) The curves t · g(t) are determined from the different experimental curves g(t)

corresponding to each of the [S]0-values obtained in above point (4).
(8) From each of the above curves (i.e. for each of the [S]0-values used) one numer-

ically determines the area below the curve, i.e. the corresponding statistical
moment M1.

(9) Using Eqs. 21 and 17 and the corresponding expressions Eqs. 32 and 33 one deter-
mines the analytical expression of M1, which will depend on [S]0 through certain
parameters, each of them related with the individual rate constants involved in
the scheme of reaction mechanism by one equation.

(10) The above processes in steps (7)–(9) is repeated, obtaining the time progress
curves t2 · g(t), t3 · g(t), . . ., until a the sufficient number of equations relat-
ing the overall parameters involved in the expression of the moments Mj (j =
0, 1, 2, . . .) with the individual rate constants are obtained.

(11) From here the strategy to be followed depends on the form of the specific expres-
sions for these moments, which, in its turn, depends on the scheme of the reaction
mechanism under study. But generally, the procedure to be used consists of fit-
ting by non-linear regression the experimental data of M0 for each [S]0-value
and using the parameters obtained in this fitting in the next fitting involving
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Table 2 Values of the statistical moments M0, M1 and M2 corresponding to the time progress curve
v(t) = d[P]/dt for the reaction mechanism in Scheme 1 simulated using the same values of the rate con-
stants and initial concentration of enzyme as in Fig. 1 and the initial substrate concentration indicated in
first column

[S]0 (mM) M0 × 107 (M) M1 × 107 (M s) M2 × 107 (M s2)

0.01 2.2037 1.7608 2.5463
0.1 5.6561 1.9864 1.2072
0.2 6.1784 1.7438 0.8719
0.5 6.5378 1.5344 0.6699
1 6.6666 1.4511 0.6056
2 6.7327 1.4066 0.5744
4 6.7662 1.3835 0.5591
8 6.7831 1.3718 0.5515

the experimental M1-values at each [S]0-value and the corresponding symbolic
expression for M1. Then the results obtained in this fitting are used in the next
fitting involving the experimental M2-values at each [S]0-value and the corre-
sponding symbolic expression for M2, etc. until all of the individual rate constants
can be evaluated.

5.1 Numerical example

Next we illustrate the general procedure above to the specific Scheme 1 of the reaction
mechanism of an unstable system. The time progress curves were obtained by numer-
ical integration of the set of differential equations in Appendix B, which describes the
kinetic behaviour of the system. The values of the rate constants used in the simula-
tion are those indicated in Fig. 1 and are the same as those used by Garrido del Solo
et al. [19] in a contribution also concerning the evaluation of the rate constants involved
in Scheme 1, but using a different method. In all the simulated progress curves [E]0
was 1.7µM and the values of [S]0 used for each simulated curve are indicated in the
legend to the corresponding figure.

The same steps (1)–(11) as in the general procedure are followed.

(1) Product P is the species to be monitored.
(2) The function f (t) is [P], given by Eq. 7, with the expressions of β, γ1 and γ2

given in Table 1 and the relationships between λ1 and λ2 given by Eqs. 13 and
14.

(3) Because β �= 0, is g(t) = df (t)/dt , see Eq. 15, i.e. g(t) = d[P ]/dt = v(t).
(4) Figure 4 shows different simulated time progress curves v(t) versus t at a fixed

value of the initial enzyme concentration and at different values of the initial
concentration of the substrate.

(5) Table 2 summarizes the areas below each of the curves in step (4), i.e. the
M0-value for each of the [S]0-values used.

(6) The analytical expression of M0 showing its dependence on [S]0 is given by
Eq. 28. The parameters b and c involved in this equation are related with the
individual rate constants by Eqs. 29 and 30.
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(7) Figure 5 shows different simulated time progress curves t ·v(t) versus t obtained
from the different experimental curves v(t) in step (4).

(8) Table 2 summarizes the areas below each of the curves in step (7), i.e. the
M1-value for each of the [S]0-values used.

(9) The analytical expression of M1 showing its dependence on [S]0 is given by Eq.
33. The parameters a′, b and c involved in this equation are related with the
individual rate constants by Eqs. 34, 29 and 30.

(10) Steps (7)–(9) are repeated to obtain the progress curves t2 · v(t) versus t from
those of v(t) versus t . In Fig. 6 we show different simulated time progress curves
t2 · v(t) versus t obtained from the different experimental curves v(t) in step
(4). Table 2 summarizes the areas below each of the curves in this step, i.e.
the M2-value for each of the [S]0-values used. The analytical expression of M2
showing its dependence on [S]0 is given by Eq. 37. The parameters a′′, b′′, b and
c involved in this equation are related with the individual rate constants by Eqs.
38, 39, 29 and 30.

(11) From here we suggest the following procedure to provide the individual rate
constants.

5.1.1 Procedure

The procedure consists of the following six steps:

(i) The experimental data of M0 for each [S]0 are fitted to the two parameters
rational Eq. 28 and, from this, the value of b, Vmax and c which are given in
Table 3 can be estimated.

(ii) Because Eq. 33 can also be written as:

M1(1 + c[S]0)
2

bVmax[S]0
= a′ + b[S]0 (42)

a plot of the experimental data M1(1 + c[S]0)
2/(bVmax[S]0) and [S]0 to Eq. 42

allows us to estimate a′ and b. Thus, steps (i) and (ii) provide the values of b,
Vmax, c and a′.

Table 3 Values of the parameters Vmax, b, c, a′, a′′ and b′′ obtained from the procedure proposed in the
main text for the reaction mechanism in Scheme 1. In the third column is indicated the equation relating the
corresponding parameter with the rate constants. In the 4th column the values of these parameters obtained
from the rate constants used in the simulations are shown

Parameter Determined value Equation True value

Vmax (M s−1) (3.523 ± 0.009)×10−6 26 3.4×10−6

b (M−1 s) (0.9815 ± 0.0022)×104 29 104

c (M−1) (4.910 ± 0.010)×104 30 5×104

a′ (s) 1.0933 ± 0.0007 34 1.1
a′′ (s) 1.1071 ± 0.0024 38 1.11
b′′ (M−1 s) (1.6565 ± 0.0008)×104 39 1.7×104
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Table 4 Values of the rate constants k1, k−1, k2, k3 and k4 obtained from the procedure proposed for the
reaction mechanism in Scheme 1. The value of k2 can only be obtained if [E]0 is known ([E]0 = 1.7 µM
in all of the simulations) using Eq. 26 and the Vmax-value in Table 3. In the last column the values obtained
for the rate constants by Garrido del Solo et al. are also indicated

Rate constant Determined values True values Values obtained by Garrido
del Solo et al. [19]

k1 (M−1 s−1) (0.986 ± 0.009)×105 105 (1.01 ± 0.06)×105

k−1 (s−1) 2.928 ± 0.005 3 2.85 ± 1.93
k2 (s−1) 2.072 ± 0.005 2 2.00 ± 0.26
k3 (s−1) 1.001 ± 0.004 1 0.90 ± 0.62
k4 (s−1) 5.003 ± 0.015 5 5.00 ± 0.63

(iii) Because Eq. 37 can also be written as:

M2 (1 + c[S]0)
3

2bVmax[S]0
− b2[S]2

0 = a′′ + b′′[S]0 (43)

a plot of the experimental data M2(1+c[S]0)
3/(2bVmax[S]0)−b2[S]2

0 and [S]0
to Eq. 43 allows us to estimate a′′ and b′′, as shown in Fig. 7.

(iv) After steps (i)–(iii) the values of Vmax, b, c, a′, a′′ and b′′ are known, and they
are shown Table 3 for our numerical example.

(v) Vmax has already been evaluated in step (ii). If moreover the initial enzyme
concentration [E]0 is known, then from Eq. 26 k2 is immediately obtained.

(vi) From the values of b, c, a′, a′′ and b′′ and Eqs. 29, 30, 34, 38 and 39, the
individual rate constants k1, k−1, k3 and k4 can be evaluated by solving the cor-
responding set of algebraic equations. These values are given in Table 4, where
also the true values of these rate constants used for the numerical integration
are shown. Furthermore in this table are indicated the corresponding values ob-
tained using another more complicated method developed by Garrido del Solo
et al. [19] based on the fit of the biexponential product accumulation equation.
Note that the values obtained for the rate constants using our novel method are
considerably more accurate than those given in the above mentioned contribu-
tion.

6 Results and discussion

The main purpose of any kinetic analysis of an enzyme system, unstable systems, is the
evaluation of the individual rate constants. The evaluation of these kinetic parameters
involves, first of all, the experimentally obtaining the time progress curves of any of the
involved species or set of species (e.g. the residual activity equal to the sum of active
enzyme forms). Then, the progress curves obtained are fitted to the corresponding
theoretical equation, which generally consists in a polynomial part [consisting of the
term β in unstable systems] and an exponential part consisting either of one exponen-
tial term or a sum of exponential terms. From these fittings one evaluates, in principle,
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the kinetic parameters involved or algebraic combinations of them [9,25,76]. Nev-
ertheless, in many cases, e.g. when these equations contain two or more exponential
terms, fitting is not easy and indeed may be impossible. To minimize these problems
there exists, as mentioned above, different strategies leading to the derivation of a
simpler time course equation which the experimental data fit better. Obviously, from
the simplified equations the results can quite considerably differ from the real ones.

In this paper, we propose a novel method for evaluating the individual rate constants
involved in any scheme of unstable enzyme reactions, irrespective of its complexity
and, therefore, of the number of exponential terms of the time-course equations corre-
sponding to the species to be experimentally monitored. This method is based on the
numerical and analytical evaluation of the j -th (j = 0, 1, 2, . . .) statistical moments
of the function g(t) defined above. The number of moments to be taken depends on the
mechanism complexity. This method has, in our opinion, the following advantages:

(1) The method is applicable to any unstable enzyme system independently of its
complexity and, therefore, of the number of exponential terms of the function
f (t) corresponding to the enzyme species o sum of concentrations of enzyme
species to be monitored.

(2) The j -th statistical moments corresponding to the experimental progress curves
g(t) are easy to evaluate, e.g. using numerical methods such as the trapezoidal
method [63].

(3) The analytical expression of the j -th statistical moment of the function g(t) is
easy to derive from Eq. 21, the corresponding expressions of the amplitudes
δh (h = 1, 2, . . . , n) and the relationships between the arguments λh(h =
1, 2, . . . , n) corresponding to the time course equation of the specific species
in the unstable enzyme system under study. By obtaining the statistical moments
Mj (j = 0, 1, 2, . . .) to express them as a function of the individual rate constants
and initial concentrations appear intermediate expressions like Eq. 25.

(4) The fit of experimental data to rational equations such as the corresponding ones
to the j -th statistical moments, Mj (j = 0, 1, 2, . . .) is much more reliable than
the fit to an multiexponential time course equation as it is now usually made
[19,76].

(5) The method is also applicable to the simplified time course equations.
(6) The method suggested here is independent of the relative values of the rate con-

stants involved in the scheme of reaction mechanism of the unstable system. Thus,
if these values would be k1 = 106 M−1 s−1, k−1 = 100 s−1, k2 = 5 s−1, k3 =
4 s−1, k4 = 2 s−1, we would obtain the values of rate constants in Table 5.

(7) The procedure suggested can by extrapolated for application to any stable enzyme
systems as we now summarily point out. Effectively, for a stable enzyme system
the time course equation of the concentration of any species as the general form:

C = β + α1t + α2t
2 + · · · αr t

r +
n∑

h=1

γhe
λht (44)

If we take the (r + 1)-th time derivative in Eq. 44, and we denote dr+1C/dt r+1 as
g(t), we obtain:
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Table 5 Values of the rate constants k1, k−1, k2, k3, k4 and KM obtained using the procedure proposed
for the reaction mechanism in Scheme 1. The method suggested here is independent of the relative values
of the rate constants involved in the reaction mechanism scheme of the unstable system The value of k2 can
only be obtained if [E]0 is known ([E]0 = 0.1 µM in all of the simulations) using Eq. 26

Rate constant Determined value True value

k1 (M−1 s−1) (1.022 ± 0.008)×106 106

k−1 (s−1) 99.98 ± 0.28 100
k2 (s−1) 5.0000 ± 0.0007 5
k3 (s−1) 4.0981 ± 0.0013 4
k4 (s−1) 1.9996 ± 0.0004 2

g(t) = dr+1C

dt r+1 =
n∑

h=1

δhe
λht (45)

where

δh = λr+1
h γh (46)

Note that Eq. 45 is identical to Eq. 16 and, therefore the method can be used
(whenever all of the arguments λh are real negative or complex with a negative real
part, as it is usual in most of the enzyme systems). Nevertheless in these cases the time
taken as t → ∞ must be the maximum t-value at which approached Eq. 5 is valid.

But this method has the following limitation. The statistical moment obtained from
the experimental curve g(t) supposes the numerical evaluation of the area below the
curve between t = 0 and t → ∞. Obviously the condition t → ∞ is not attachable
and, so, an error, albeit very small, always occur when the worker chooses what is
a finite time as t → ∞. In our numerical example the criterion we used to choose
a finite time as t → ∞ was the higher of these two times: the time needed to the
residual activity, i.e. [E] + [ES], becomes 10−6[E]0 or the time needed to the rate of
product formation reaches a value equal to 10−4 times its maximum value but any
other criterion may also be acceptable whenever at the time chosen as t → ∞ is
observed that tj · g(t) → 0.

Another disadvantage is that the set of algebraic equations to be solved to obtain the
rate constants could be not linear and, so a quadratic, cubic or higher degree equation
appears, which must be solved and some absurd solutions must be discarded. Never-
theless, the actual Mathematica symbolic software packages may considerably help
in this mechanical task.

Appendix A

In this Appendix we resume the results obtained [75] for sums, such as those indicated
in Eq. 41 in the main text which appear in our analysis of dynamic linear time-invariant
systems.
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In the sum types indicated in Eq. 41, n is an integer number higher than unity
(i.e. n = 2, 3. . .), r is any positive, negative or null integer number and λh and λp

(h, p = 1, 2, 3, . . ., n) are different, non-null, complex numbers. For ease, we will
denote expressions like those in Eq. 41 as Q(n, r), i.e.:

Q(n, r) ≡
n∑

h=1

1

sr
h

n∏

p = 1
p �= h

(λp − λh)

(A.1)

We have shown (derivation not given) the following summarized results:

Q(n, r) =
⎧
⎨

⎩

R(n,r)
P r

n
if r ≥ 0

(−1)n−1R′(n, r) if r < 0
(A.2)

where:

R(n, 0) = 0 (A.3)

R(n, 1) = 1 (A.4)

R(n, r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pn−1 Pn−2 · · · Pn−r+1
Pn Pn−1 · · · Pn−r+2
0 Pn · · · Pn−r+3
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · Pn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if r > 1 (A.5)

R′(n, r) = 0 if − r < n − 1 (A.6)

R′(n, r) = 1 if − r = n − 1 (A.7)
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R′(n, r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P1 1 0 · · · 0
P2 P1 1 · · · 0
P3 P2 P1 · · · 0
· · · · · · ·
· · · · · · ·
· · · · · · ·

P−(n+r−1) P−(n+r) P−(n+r−1) · · · P1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if − r > n − 1 (A.8)

In the Eqs. (A5) and (A8), Pv (v = 1, 2, . . ., n) is equal to the sum of all the v-
nary (v ≤ n) products distinct from λ1, λ2, . . ., λn. Always P0 appears it must be set
P0 = 1.

From the definition of Pv (v = 1, 2, . . ., n) and Eq. 4, we obtain:

Pv = (−1)vFv (A.9)

Therefore, R(n, r) (for r > 1) and R′(n, r) (for −r > n − 1) can be expressed
in terms of the coefficients F1, F2, . . ., Fn of Eq. 2, rather than in terms of its roots
λ1, λ2, . . ., λn.

Appendix B

Set of differential equations describing the kinetic behaviour of the unstable enzyme
system evolving according to the reaction mechanism in Scheme 1:

d[E]

dt
= −k1[S][E] − k3[E] + (k−1 + k2)[ES] (B.1)

d[ES]
dt

= k1[S][E] − (k−1 + k2 + k4)[ES] (B.2)

d[Ei]
dt

= k3[E] (B.3)

d[ESi]
dt

= k4[ES] (B.4)

d[S]
dt

= −k1[S][E] + k−1[ES] (B.5)

d[P]
dt

= k2[ES] (B.6)
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